

Toxicology and Carcinogenesis Studies of Pulegone in F344/N Rats and B6C3F1 Mice (Gavage Study)

Scott Auerbach, Ph.D.

National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Technical Reports Subcommittee November 19, 2009

Pulegone

- Nominated by NIEHS based on the potential for human exposure and the absence of carcinogenicity data
- Found in several essential oils that are used to provide <u>mint</u> flavoring for foods, drinks, and dental products. Also found in select herbal medicines
- Some synthetic production, however most exposure comes through its natural occurrence in food
- Use of certain herbal medicines can lead to exposures as high as 2.3 mg/kg/day

Experimental Design

Genotoxicity: Ames mutagenicity and Erythrocyte micronucleus (mice)

ADME Study: 0.8, 8.0 and 80 mg/kg in male and female B6C3F1 mice and

F344/N rats

14-day Study: Rats: 0, 37.5, 75, 150, 300, 600 mg/kg

Mice: 0,18.75, 37.5, 75, 150, 300 mg/kg

(5 animals/species/sex/dose)

13-week Study: Rats and mice: 0, 9.375, 18.75, 37.5, 75, 150 mg/kg

(10 animals/species/sex/dose)

2-year Study: Male rats: 0, 18.75, 37.5, 75 mg/kg

Female rats, male and female mice: 0, 37.5, 75, 150 mg/kg

(50 animals/species/sex/dose)

NTP Genotoxicity Test Results

- Ames mutagenicity test negative (with and without S9)
- Micronucleus test, male and female mice negative (3-month study)

ADME TK Studies

- Rapidly and extensively absorbed from the gastrointestinal tract
- Male rats tend to have higher tissue concentrations compared to female rats, especially in kidney
 - Pulegone binds reversibly to α2u-globulin
 - No accumulation of α2u-globulin observed in kidney
 - Sex difference is not seen in mice
- Metabolic profile is complex: at least three pathways involving hydroxylation, reduction, or conjugation with glutathione as first steps.
- Primarily excreted in the urine
- · Mice exhibit slightly higher rates of clearance
- T_{1/2} is approximately 2 hours

14-Day Study in Rats

	Vehicle			(mg/kg)		
	control	37.5	75	150	300	600
Males						
Survival	5	5	5	5	0	0
Final body weight (% control)		90**	97	88**	-	-
Liver necrosis	0	(¥)	-	1(1.0) ^a	5**(2.2)	4*(1.8)
Females						
Survival	5	5	5	5	1	0
Final body weight (% control)		107	100	103	71	2
Livernecrosis	0	-	0	0	4**(2.0)	5**(1.4)

N=5

^{*}P<0.05, **P<0.01

^a Severity

Dose Selection Rationale for 13-Week Study - Rats

- Doses by gavage set at: 9.375, 18.75, 37.5, 75, and 150 mg/kg
- Based on mortality and liver necrosis observed in the 14-day study at doses of 300 and 600 mg/kg

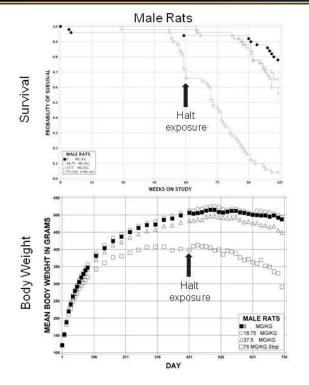
13-Week Study in Rats

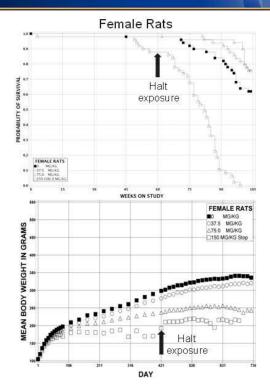
	Vehicle			(mg/kg)				
	control	9.375	18.75	37.5	75	150		
Males								
Survival	10	10	10	10	10	10		
Final body weight (% control)		100	97	99	91**	69**		
Females								
Survival	10	10	10	10	10	9		
Final body weight (% control)		101	97	96	97	89**		

N= 10

**P<0.01

13-Week Study in Rats - Select Histopathology


	Vehicle	Vehicle				
n	control	9.375	18.75	(mg/kg) 37.5	75	150
Males						
Hyalin e Glomeru lopathy (Kidn ey)	0	0	0	0	2(1.0)	10** (1.0)
Hepatocyte Focal Necrosis (Liver)	0	0	0	0	0	6** (1.0)
Bile Duct Hyperplasia (Liver)	0	0	0	0	9**(1.0)	10**(2.0)
Periportal Fibrosis (Liver)	0	0	0	0	0	10**(1.0)
Females						
Hyaline Glomeru lopathy (Kidney)	0	0	0	0	0	8**(1.0)
Bile Duct Hyperplasia (Liver)	0	0	0	0	1(1.0)	10**(1.7)
Periportal Fibrosis (Liver)	0	0	0	0	0	9**(1.0)


N=10 ** P<0.01 • Severity

Dose Selection Rationale for 2-Year Study - Rats

- Highest dose levels for the 2-year studies were 75 mg/kg for male rats and 150 mg/kg for female rats
- Based on:
 - In the 13-week study the final body weight of the 150 mg/kg males was 30% less than that of controls and hepatic necrosis was observed
 - The final body weight of the 75 mg/kg males and 150 mg/kg females from the 13 week study was about 10% less than their respective vehicle controls
 - Considered adequate high doses

Cause of Increased Mortality

 Renal failure secondary to hyaline glomerulopathy and chronic progressive nephropathy (CPN)

	Vehicle		(mg/kg)		
N-	control	18.75	37.5	75	150
Males					
Hyaline Glomerulopathy	0/50	0/50	9/50**(1.1)	24/50**(1.6)	-
CPN	45(1.9)	45(1.9)	50(2.9)	50(4.0)	<u>-</u>
Females					
Hyaline Glomerulopathy	0/50	<u>=</u>	17/50**(1.0)	49/50**(2.2)	48/49**(3.3)
CPN	42(1.2)	=	44(1.3)	49**(2.9)	48**(3.4)

^{**} P<0.01

^a Severity

Neoplastic Effects - Rat

• Male rat: none

• Female rat: urinary bladder

	Vehicle		(mg/kg)	
	control	37.5	75	150
Urinary Bladder Papilloma	0/50	0/49	1/50	3/47*
Urinary Bladder Papilloma or Carcinoma ^a	0/50	0/49	1/50	5/47*b

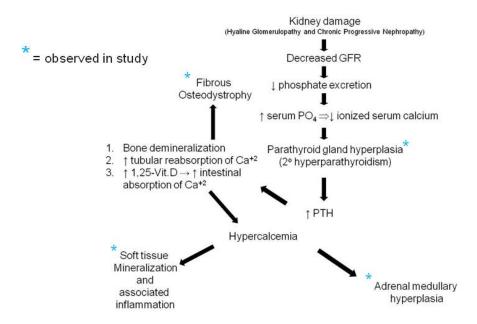
a Historical incidence for 2-year gavage studies with corn oil vehicle control groups: 0/200; all routes: 0/1,347

^b Survival adjusted rate: 20.8%

^{*} P<0.05

Non-Neoplastic Effects - Rat

- Male and female
 - Liver (Necrosis and Portal fibrosis among many other lesions)
 - Kidney (Hyaline glomerulopathy among other lesions)
 - Nose (Olfactory epithelium degeneration among other lesions)
- Male only
 - Forestomach (Ulceration among other lesions)



Pathology Considered Secondary to Renal Disease

- Parathyroid gland hyperplasia
- Fibrous osteodystrophy
- Blood vessel and tissue calcification and associated inflammation
- Adrenal medullary hyperplasia

Hypothetical Relationship Between Secondary Lesions

14-Day Study in Mice

	Vehicle					
	control	18.75	37.5	75	150	300
Males						
Survival	5	5	5	5	5	4
Final body weight (% control)		105	102	100	103	98
Livernecrosis	1(1.0)	0	0	0	1(2.0)	5*(2.0)
Females						
Survival	5	5	5	5	5	1
Final body weight (% control)		106	104	102	101	96
Livernecrosis	1(1.0)	0	0	0	0	4*(3.0)

N=5

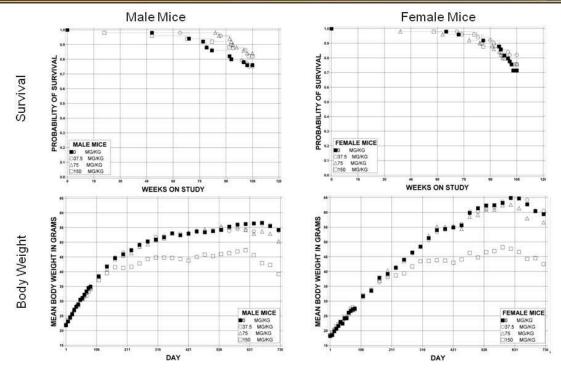
*P<0.05

Dose Selection Rationale for 13-Week Study - Mice

- Doses selected for the 13-week gavage study in mice were 9.375, 18.75, 37.5, 75, and 150 mg/kg
- Based on mortality and liver necrosis at 300 mg/kg in the 2-week study

13-Week Study in Mice

	Vehicle					
	control	9.375	18.7	37.5	75	150
Males						
Survival	10	10	10	10	10	10
Final body weight (% control)		99	102	98	98	99
Females						
Survival	10	10	10	10	10	10
Final body weight (% control)		102	101	109	103	96


N=10

^{*}No chemical-related histological changes were observed

Dose Selection Rationale for 2-year Study - Mice

- Doses selected for the 2-year gavage study were 37.5, 75, and 150 mg/kg
- Based on the lack of mortality and effects on body weights and the lack of lesions attributable to pulegone administration in the 13 week study

Neoplastic Effects - Male Mice

	Vehicle		(mg/kg)	
	control	37.5	75	150
Hepatocellular adenoma, multiple	6/50	19/50**	27/50**	18/50**
Hepatocellular adenoma (includes multiple) ^a	22/50	31/50	35/50**!	28/50
Hepatocellular adenoma, hepatocellular carcinoma, or hepatoblastoma ^b	29/50*	37/50	42/50**	36/50

^a Historical control range for 2-year gavage studies with corn oil: 44%-54%; all routes: 24%-72%

^b Historical control range for corn oil gavage studies: 58%-76%; all routes: 46%-92%

^{*} P<0.05

^{**} P<0.01

¹ Exceeds historical control range for corn oil gavage

Neoplastic Effects - Female Mice

	Vehicle		(mg/kg)	
	control	37.5	75	150
Hepatocellular adenoma a	13/49**	15/50	13/50	27/50**!
Hepatocellular adenoma, hepatocellular carcinoma, or hepatoblastoma b	17/49**	15/50	15/50	33/50**!#
Osteoma or osteosarcoma, all organs º	0/49	0/50	3/50	1/50

a Historical control range for corn oil gavage studies: 6%-27%; all routes: 2%-62%

^b Historical control range for corn oil gavage studies: 8%-35%; all routes: 6%-64%

[°] Historical control range for corn oil gavage studies: 0%-2%; all routes: 0%-4%

^{**} P<0.01

[!] Exceeds historical control range for corn oil gavage

[#]Exceeds historical control range for all routes

Non-Neoplastic Effects - Mice

- Male and female
 - Liver (Necrosis and eosinophilic foci among many other lesions)
 - Kidney (Hyaline glomerulopathy among other lesions)
 - Nose (Olfactory epithelium degeneration among other lesions)
 - Forestomach (Hyperplasia and inflammation)

Conclusions

• Male rats: <u>no</u>evidence of carcinogenic activity

• Female rats: some evidence of carcinogenic activity – urinary bladder

• Male mice: <u>clear</u> evidence of carcinogenic activity - liver

• Female mice: <u>clear</u> evidence of carcinogenic activity – liver

equivocal evidence of carcinogenic activity - bone

• Increased non-neoplastic lesions:

- Male and female rats and mice

■ Kidney (hyaline glomerulopathy), liver and nose

- Male rats and mice and female mice

Forestomach

Questions?

